
ChessBrain: a Linux-Based Distributed Computing Experiment
Carlos Justiniano

cjus@chessbrain.net, cjus34@yahoo.com

Published in the September 2003 issue of the Linux Journal
http://www.linuxjournal.com/article/6929

On May 27, 2003, 646 machines worked together to play a
single game of chess. This was the first time such a feat had
been accomplished, and it was made possible by the power
of Linux, open-source software and hundreds of contributors
from over 37 different countries.

ChessBrain (chessbrain.net) is a distributed computation
project that uses the idle processing power of distributed
machines to solve computationally intensive problems.
ChessBrain is a system focused on playing chess, but the
underlying system can be adapted for other games as well as
for non-game-related applications.

Imagine playing a game against an opponent, except every
time he moves, you grab the phone and start calling friends
for help. You call Sue, describe the current position and ask
her to call you back when she has an answer. Then you call
Ryan to ask whether you should worry about a pending
attack; again, you ask for a call back when he has an answer.
After calling 20 other friends, you sit back and wait for
replies. This is similar to how ChessBrain plays chess.

ChessBrain consists of a Linux-based server application, the
SuperNode, and client software known as PeerNodes. The
SuperNode connects to an on-line game server, which allows
visiting members to play against one another, challenge
ChessBrain to a game or watch ChessBrain play against its
current opponent. While ChessBrain plays, it examines
positions, dispatches hundreds of potential moves to remote
PeerNodes for analysis, collects feedback from the
PeerNodes, processes that information and makes its best
move. ChessBrain exists as an ever-changing pool of
networked machines. Philosophically and scientifically, it's a
beautiful thing.

I started ChessBrain as a distributed computing experiment
in the summer of 2001. By the end of that year, I had a
working prototype and needed a place to host the server. My
longtime friend, Walter Howard, the webmaster of
HackerWhacker (hackerwhacker.com), offered to host the
server on his personal T1 line.

Figure 1. The First ChessBrain Servers

On June 9, 2002, ChessBrain appeared on Slashdot, and the
positive exposure resulted in hundreds of new PeerNode
operators. Gavin Roy, one of the new members, owns the
bteg network (http://www.bteg.net/) and offered to host a
SuperNode server free of charge. On June 27, I met Gavin
for dinner and handed this near stranger a SuperNode server
on a Pentium III machine. ChessBrain gained another server,
I gained another friend, and Gavin has become an important
supporter of the ChessBrain Project. I transitioned the
SuperNode over to Gavin's site, and Walt continued to host
the original SuperNode as a secondary backup and
experimental server.

During the months that followed, we gained an amazing
amount of exposure. Few seemed to mind that ChessBrain
couldn't actually play chess. The first eight months of 2002
were spent working on the SuperNode server and porting the
PeerNode client to Microsoft Windows and Apple's Mac OS
X.

Once the server and clients worked well, the focus was on
getting ChessBrain actually to play. The wbec-ridderkerk
(http://www.wbec-ridderkerk.nl/) site in the Netherlands lists
nearly 200 freely available chess-playing programs. I
reviewed a few, looking for one with relatively clean code

and the ability to compile under several operating systems. I
found an ideal program in Beowulf, written by Colin Frayn,
who was then a PhD candidate at Cambridge University in
England. We exchanged several e-mails and Colin joined the
project. We collaborated entirely on-line using e-mail and
instant messaging (IM) and began making necessary
modifications. Colin adapted his chess program for
distributed computing, and I modified the SuperNode and
PeerNode clients to use his engine. The time difference
between London and Los Angeles proved ideal. I would IM
Colin at my 3AM and again during the day. By my late
afternoon, Colin would head for bed, and I would work
through his night. Before crashing, I would leave feedback
for Colin. This round-the-clock cycle continued for months.
Colin adapted his original Beowulf chess engine to become
two chess-playing components, BeoServer and BeoClient.
He developed the pair to support distributed chess play
within the ChessBrain framework. On December 22, 2002,
ChessBrain played its first game of distributed chess. By
January 2003, the ChessBrain community had provided 62
machines and was testing regular builds.

Overview

The SuperNode and PeerNode are multithreaded applications
written in C++ and compiled using GCC under Red Hat
Linux 7.1, 7.2 and 8.0. The primary SuperNode server runs
under Slackware 8.0 at bteg network's colocation site in
Northern California (Figure 2).

Figure 2. The ChessBrain System Architecture

Because the applications are heavily multithreaded, I spent a
fair amount of time resolving threading issues. I used GDB,
DDD and custom logs to tackle debugging. Early in the
development process, Perl scripts proved especially effective
in helping test new functionality and stress test the software.
I have 12 machines at home; these, plus an army of Perl
scripts pounding on a local server, proved to be formidable
testing tools.

XML, SOAP and Web Services

Early in the project I realized the SuperNode server would
need to communicate with other servers. During that time
XML offered a viable approach, and later XMLRPC
(http://www.xmlrpc.org/) brought additional advantages. The
Simple Object Access Protocol (SOAP) continued evolving
to meet the needs of servers that speak to other servers.
Encouraged by promises of improved interoperability, I
adopted SOAP as the preferred method of communication
for the SuperNode server and PeerNode client.

From the outside, the SuperNode acts like a Web server with
SOAP-based interfaces. Although the SuperNode server
handles HTTP GET and POST, the POST message is used
most often. The SuperNode parses HTTPs and XML-based
SOAP requests, processes those requests and returns HTTP
packages with embedded SOAP payloads.

The SuperNode and PeerNode parse SOAP requests and
route commands to an internal command dispatcher, which
ensures that the correct command handlers process the
requests. In the SuperNode, the most common requests come
from PeerNode clients; a PeerNode must connect to request a
job unit. A job unit is an XML block containing a game
position and instructions on how to analyze the position. A
PeerNode contains a complete chess engine component,
compiled and linked as a static library. When the PeerNode
receives a job unit, it processes the SOAP response, extracts
the job-specific information and passes instructions to its
internal chess component for analysis.

The SuperNode server then passes the current game position
to the external BeoServer process. Interprocess
communication between the SuperNode and BeoServer is
accomplished using two pipes. In the near feature, we expect
to move BeoServer to its own box and shift to UDP over
1000Base-T Ethernet.

Security

Secure and tamper-free communication is a necessity for
ChessBrain. An invalid result created by a malicious user
could render the play ineffective and ultimately
embarrassing. Sensitive communication is protected using
the Advanced Encryption Standard, AES Rijndael
(pronounced Rhine-doll). AES is a variable block symmetric
encryption algorithm developed by Belgian cryptographers
Joan Daemen and Vincent Rijmen as a replacement for the
aging DES and Triple DES standards.

Before exploring Rijndael, the Blowfish symmetric cipher
was used until the PeerNode client was ported to Mac OS X
and problems surfaced involving endian issues with the

implementation of Blowfish being used. AES is an endian-
neutral algorithm and proved ideal for our situation.

The original design of the PeerNode involved having the
client and its chess engine as two separate processes. The
PeerNode started the chess engine process and redirected the
standard I/O to establish a loose binding. Initially, we
avoided directly linking chess code with the PeerNode client
so the chess code could be replaced quickly and easily in
future iterations of the software. We later moved to a static
linking approach to deal with potential security issues. The
problem was that it's entirely possible to write a chess engine
proxy that sits between the PeerNode and the actual chess
engine program. This would offer an easy way to alter results
before sending them to the SuperNode server. We decided to
link the engine component statically because of two key
advantages, tighter security and function-based rather than
I/O-based messaging.

The surge of interest from Slashdot soon made it necessary
to reduce ChessBrain's bandwidth requirements. To this end,
the use of SOAP offered many advantages, but its size left
much to be desired. The Zlib data compression library
(http://www.zlib.org/) is now used prior to encryption to
reduce the size of SOAP-based messaging. Naturally, adding
compression and encryption reduces the potential for
interoperability; however, the XML encryption specification
(www.w3.org/TR/xmlenc-core) offers an alternative
approach.

Bots, Presence and Autonomous Play

The SuperNode server has a Bot called Shannon
(implemented as a thread) that connects to on-line game
servers and maintains a presence. Members of the game
server type commands to challenge ChessBrain or to watch
the current game being played. It has been fun programming
Shannon, which now understands a variety of commands.
There is a great deal of potential in on-line bots that can be
instructed to perform actions on behalf of their hosts.

During the development of ChessBrain, I downloaded the
source code to a Free Internet Chess Server (FICS) and
compiled it on an old Pentium 200 MMX Toshiba laptop
running Linux. FICS is written in C, and it compiled using
GCC without incident. The game server allows users to
telnet to port 5000 and sign in with a user name and
password. After a few months the traffic increased, and we
moved the FICS server to another ChessBrain machine at our
secondary domain at distributedchess.net. Users now have
several options for watching ChessBrain play on-line. They
can telnet directly to the game server where ChessBrain is
playing or use one of our viewer programs.

After ChessBrain could play on an on-line game server, I
wrote a Java game viewer to allow people to watch live

games. As an alternative to the Java viewer, I also wrote
viewers based in PHP and Macromedia Flash
(www.chessbrain.net/viewers.html). ChessBrain contributor
Anthony Bravo wrote a Java-based network viewer to show
the active PeerNodes throughout the world. Users can click
on nodes to see how many machines are active in a given
country. All of the viewers on the ChessBrain site use SOAP
to communicate with the SuperNode.

As a security precaution, browser plugins such as Java and
Macromedia's Flash ActionScript don't allow the program to
connect to a server other than the one from which the applet
was downloaded. To work around this issue, I wrote a simple
XML proxy script that accepts an HTTP GET request on one
server and connects to the SuperNode server on behalf of the
client. For example, if you wanted to query the SuperNode
server for the current game position, you could enter the
following URL into your browser:

http://www.chessbrain.net/xmlproxy.php?command=CBSG
etPos

The server would respond with a SOAP package like the one
in Figure 4. On Mozilla you can view the page source to see
the actual SOAP document.

Listing 1. A ChessBrain XML Response Package

<?xml version="1.0" ?>
<env:Envelope xmlns:env=
 http://www.w3.org/2001/12/soap­envelope
 xmlns:enc=
 "http://www.w3.org/2001/12/soap­encoding">
 <env:Body>
 <cbs:CBSGetPosResponse>
 <return>
 rn1qk2r/p2p1ppp/bb2pn2/1p6/1P6/
 P2Q1NP1/1BP1PP1P/RN2KB1R b KQkq ­
 </return>
 </cbs:CBSGetPosResponse>
 </env:Body>
</env:Envelope>

Monitoring the SuperNode

Monitoring a server's health is an important part of system
administration. Fortunately for developers, Linux offers
many ways to tackle server monitoring. The Linux /proc
virtual filesystem contains a goldmine of valuable system
data, offering developers an easy way to profile and monitor
system behavior. /proc/net/dev offers device data such as the
number of bytes and packets sent and received on a network
interface, and /proc/meminfo offers loads of memory
statistics. If data mining the /proc isn't your thing, sysinfo()
offers a quick and easy way to fill a structure with system
statistics, such as system load, freeram and the total number
of processes.

The SuperNode server offers a SOAP request that returns
system information similar to what is shown in Listing 2.

ChessBrain member Greg Davis wrote the first SuperNode
monitor in Perl, which issues the SOAP request and displays
a screen similar to the top command.

Listing 2. An XML Server Status Message

<?xml version="1.0" ?>
<env:Envelope>
 <env:Body>
 <cbs:CBSSysInfoResponse
 >
 <Uptime days="1" hours="14"
 minutes="43" seconds="18" />
 <System proccnt="546" totmem="250.13"
 freemem="4.38"
 memu="98"
 cpustates="3627078,0,2151891,8160852"
 loadavg="0.50,0.30,0.33" />
 <Recv Bytes="2301480887.000000"
 Packets="16652816.000000"
 Errors="0.000000"
 Drop="0.000000" />
 <Send Bytes="2443488824.000000"
 Packets="12142245.000000"
 Errors="0.000000"
 Drop="0.000000" />
 </cbs:CBSSysInfoResponse>
 </env:Body>
</env:Envelope>

PeerNode Monitoring

Because many members of the ChessBrain community run
PeerNode clients on several machines, they wanted a
convenient way to monitor the status of a group of machines.
The PeerNode client was modified to post SOAP requests to
port 3434 so PeerNode monitor applications could listen on
that port and display real-time status information. I wrote the
first PeerNode monitor application, and other members
submitted their own. Greg Davis and Oliver Otte both
submitted Perl-based PeerNode monitors. The most popular
PeerNode monitor, CBMoc, was written in Java by Kris
Drent.

Figure 3. Java-Based CBMoc

Cross-Platform Graphics and Data Visualization

ChessBrain collects a great deal of data, and we're currently
exploring data visualization as a way of tracking and
investigating system behavior. We're adding 3-D-based game
navigation tools to allow us to track network play visually.
Sven Herrmann, our resident 3-D expert, has created an
OpenGL-based renderer that we use in our SuperNode
monitor application. We'll also use the new renderer in our
next-generation screensaver program and game viewers.

Figure 4. Real-Time OpenGL Rendering

Conclusion

Today, ChessBrain is a working prototype that plays chess
using hundreds of machines running Linux, FreeBSD, Mac
OS X and Microsoft Windows. It plays at international
master strength, and we see many ways to continue making
improvements.

ChessBrain exemplifies the use of open-source tools to solve
complex problems. We're preparing ChessBrain itself for
release as an open-source project, with the hope that others
will join and expand the effort. The wonderful thing about
ChessBrain is that there are so many ways to contribute.
Anyone with a PC and Internet connection can participate.
Download a PeerNode client from the ChessBrain Web site,
run the software on one or more computers and help increase
the size of ChessBrain.

We're currently working toward an official world record for
the largest number of machines used to play a single game.
We have an established contact at the World Record office in
London and contacts within a number of official chess
federations. The ChessBrain Project is supported by a strong
core team, including Peter Wilson, the former chairman of
the World Chess Federation's (FIDE) Computer Chess and
Internet Committee. The ChessBrain team currently is
exploring potential venues for a public and Internet-based

demonstration involving a new Guinness World Record in
distributed computation and chess. Check the ChessBrain
site for an official announcement.

Acknowledgements

Many thanks to Janus Daniels, Cedric Griss and other
ChessBrain team members for their support in the
preparation of this article. For contact information and a list
of who's who on ChessBrain visit:
www.chessbrain.net/friends.html.

