
Tapping the Matrix

Carlos Justiniano
cjus@chessbrain.net, cjus34@yahoo.com

This paper was first published on the O’Reilly OpenP2P.com
website (http://www.openp2p.com/) as a two part article in April 2004.

Neo awakes amidst a vast field of towering pods. Each pod,
connected to the matrix, contains a person whose bioelectric
energy is being harvested as fuel for a race of machines. That
was one of the early scenes in the blockbuster movie The
Matrix. The concept, although a stretch of the imagination,
has an inverted parallel -- humans are harvesting the
processing power of the millions of machines connected to a
matrix we call the Internet.

 This opportunity is made possible, in part, by the
realization that a staggering number of computers are vastly
underutilized. This squandering of resources doesn't just
involve home computers; few businesses utilize their
computers the full 24 hours of any day. In fact, ubiquitous
applications, such as word processing, email, and web
browsing, require very few CPU resources to support their
end users, so machines are largely idle even when they
appear to be in use. Just think about what your computer is
doing right now, as you read this article.

 Modern machines are capable of executing a billion
instructions in the time it takes us to blink. The fact is that
many computers today spend a significant amount of their
time displaying multicolored swirls generated by screen
saver programs. This is in striking contrast to the golden age
of the mainframe, when time-sharing systems demanded a
premium for their precious CPU cycles.

 This situation has not gone unnoticed. For researchers, the
lure of harnessing spare computing cycles has been simply
too good to pass up. The benefits, potentially faster
computation at substantially lower costs, are made possible
because the bulk of the overall computing power comes from
remote machines -- machines that are individually owned
and operated by the general public.

Distributed Computing, Clusters, Grid Computing,
Parallel Computing, and P2P -- You Are Here!
Pop quiz: how do you create a really fast computer? You
basically have two choices.

 1. Create faster processors and components.
 2. Use more than one processor.

Since the late 1970s, some of the fastest computers have
been built using multiple processors. The goal has been to

speed up execution by allowing programs to execute on
multiple processors while sharing resources such as memory.
This has also allowed programs to communicate with one
another as they collaborate on a particular problem. This
divide-and-conquer approach to computing is known as
parallel computing and is fundamentally how complex
problems are solved using supercomputers. The tight
integration of specialized processors, memory, and the
hardware to effectively connect components produces
extremely fast computation, but also accounts for the
exorbitant costs of supercomputers.

 During the past decade, personal computers have matured
into fast and capable machines. Researchers have explored
ways of connecting groups of machines to form clusters
capable of rivaling larger, more expensive systems. Just ten
years ago, NASA researchers Thomas Sterling and Don
Becker connected 16 machines to create a cluster they called
Beowulf. Today, Beowulf clusters involving thousands of
computers are commonplace. In fact, Google claims to
operate the world's largest Linux cluster involving more than
ten thousand servers.

 As you can imagine, monitoring thousands of computers
can be a nightmare. To address this issue, specialized
software must be built to manage clusters. This is where grid
computing comes in. Grid computing software treats a
collection of machines as resources that can be partitioned,
allocated, and monitored according to established usage
guidelines. In addition, grid computing platforms provide
developers with methods of building software for use in grid
environments.

 At the time when clusters were emerging, developers
began building software that allowed personal computers to
share resources by allowing machines to loosely bind to one
another to form highly dynamic networks. The new networks
became known as Peer-to-Peer (P2P) networks, and were
initially used for instant messaging (ICQ) and later, file
sharing (Napster).

 The emergence of P2P networks reminded researchers that
in addition to instant messaging and file sharing,
computation could also be shared. As a result, an increasing
number of projects have been formed that are classified
under the banner of distributed computing, and more

specifically within a subcategory known as distributed
computation. We will use the term "distributed computation"
throughout this article to refer to distributed computing
projects, which specifically involve geographically dispersed
machines all working to solve a computational problem.

 The past decade as been incredibly fast-paced, and a
significant cross-pollination of ideas has occurred. We're
currently seeing P2P evolve to include grid-like capabilities
and grids evolving to assimilate all things distributed
computing.

Popular Projects
The O'Reilly Open Peer-to-Peer Directory and The
AspenLeaf DC web site currently list several dozen active
projects, ranging from analytical spectroscopy to the Zeta
grid, specializing in areas such as art, cryptography, life
sciences, mathematics, and game research.

 One such project, Folding@Home, set out to use large-
scale distributed computing to create a simulation involving
the folding of proteins. Proteins, which are described as
nature's nanobots, assemble themselves in a process known
as folding. When proteins fail to fold correctly, the side
effects include diseases such as Alzheimer's and Parkinson's.

 The Folding@Home team described their protein
simulation in the form of a computational model suitable for
distribution. The result is now a tool that allows them to
simulate folding using timescales that are thousands to
millions of times longer than were previously possible.

 Perhaps the most famous distributed computation project is
SETI@home (the search for extraterrestrial intelligence) at
the University of California in Berkeley. SETI@home
distributes data collected from the radio telescope on the
island of Puerto Rico to millions of remote machines
throughout the world, where the data is analyzed for
potential evidence of extraterrestrial civilizations.

 SETI@home has demonstrated the viability of harnessing
remote machines and has captured the imagination of over
four million people, and has easily become the largest
distributed computation project in history.

It All Begins with a Problem
Distributed computation projects work under the basic
premise that machines working in parallel are able to solve a
certain class of problems more cost effectively than a local
group of machines.

 If you consider starting a distributed computation project,
one of the first challenges you are likely to encounter
involves determining whether your particular problem is
suitable for distribution. That is, can your problem be
subdivided into discrete chunks? Furthermore, can the

problem be subdivided so that there are no immediate
interdependencies?

 To help address this problem, you should consider writing
programs to test the decomposition, distribution, collection,
and assembly of processed work units. You have
considerable flexibility in the choice of computer languages
and other tools, which you can use to build quick prototypes.
It is important not to get bogged down with too many
technology-related issues. The key is to keep it simple --
work with data files and command-line programs and leave
the actual inter-process and network communication aspects
for a later time. The goals at this stage should focus on
exploration and discovery, with an emphasis on the actual
problem at hand.

 Once you are confident that your problem can indeed
benefit from distributed computation, your next step is to
consider a general architecture for the various programs
you'll need.

A Common Approach
At a fundamental level, a large majority of distributed
computation projects work similarly. Let's examine a typical
project from a 30-thousand-foot view:

A central computer subdivides a problem into millions
of smaller tasks. It then proceeds to dispatch each task
to a remote machine. As each machine completes its
assigned task, it returns a result back to the central
computer, which may further subdivide (or create new)
tasks. The process continues until a solution is found or
all subtasks have been processed.

This process, while overly simplified, does reveal that a
central entity dispatches work to remote entities, which later
return results. For the sake of simplicity, I'll refer to the
central computer as a "SuperNode," the remote machines as
"PeerNodes," and subtasks as "work units." Note, however,
that a SuperNode may consist of several physical servers,
such as a scheduling server, database server, and other
intermediate servers, to help balance network load.

 You may have realized that the relationship between a
PeerNode and SuperNode bares a striking resemblance to the
relationship between web browsers and web servers. This
similarity is no coincidence, because both have client/server
attributes. We will examine this relationship later in this
article; for now, keep in mind that PeerNodes can be
considerably more dynamic than any modern-day web
browser. Also, distributed computation projects are not
restricted to client/server relationships and one-to-many
network topologies. Indeed, some projects support the
presence of multiple SuperNodes, which in turn cluster
communities of PeerNodes. In addition, DC projects such as

Electric Sheep are exploring the use of P2P networks using
protocols such as Gnutella.

Tim Toady. Tim Who?
The Perl programming community has a motto, "There's
More Than One Way To Do It," which exemplifies the
notion that a program is correct so long as it accomplishes its
goal. Despite being rather long, the motto rings true in the
distributed computing world, where we have an abundance
of technological choices.

 At one extreme, we have the all-encompassing grid
frameworks, and at another we have the necessary raw
materials (tools) to "build it ourselves." In between, we have
proprietary frameworks such as Microsoft's .NET, various
SUN Java frameworks, and open source tools such as LAMP
(Linux, Apache, MySQL, Perl/PHP/Python). We also have
several dozen readymade frameworks, such as the Berkeley
Open Infrastructure for Network Computing (BOINC),
which builds on open source LAMP tools); and Alchemi (A .
NET-based Grid Computing Framework and its Integration
into Global Grids), which leans toward the grid computing.

 Which tools are best for you? Well, that depends on your
own experience base and the unique requirements of your
project. We'll continue exploring key issues so that you'll
have a sense of how various tools work, and what you should
consider when evaluating existing frameworks or before
embarking on your own unique and custom solution.

Client/Server Communication
One of your most important considerations is how your
project's primary servers will communicate with remote
client machines. Again, we'll simplify our discussion by
referring to one or more central servers as a single
SuperNode, and multiple distributed clients as PeerNodes.

 Consider the following questions. If you don't understand a
question, ask a friend or simply enter the highlighted words
into your favorite search engine.

• Will the communication need to be synchronous or
asynchronous?

• Will the application communicate through port 80
or will it require another port?

• Will the SuperNode need to maintain sessions, or
will transactions be stateless?

• Will PeerNode clients need to communicate through
intermediary firewalls and proxy servers?

• How important is network transmission speed to the
application?

• How large is the data intended for transmission to
clients? How large will the return result be? Should
the data be compressed?

• How important is data security? Does the data have
to be encrypted at the server, the client, or both?

• Will PeerNodes need to communicate with one
another?

Those communication questions can help you to carefully
consider your project's specific goals and requirements, in
addition to helping you evaluate the use of toolkits and
frameworks.

 In the end, your answers to those questions may lead you
down the same path taken by many distributed computing
projects. Specifically, toward the use of existing open
standards, well-established web-based communication
methodologies, and in particular, the use of the HTTP
protocol. While you are free to explore alternative
approaches (and you should, by all means), we'll focus on
the most widely accepted methodologies. This will allow you
to at least have a frame of reference as you consider the
benefits of other approaches.

HTTP, XML, and SOAP?
The Hypertext Transfer Protocol (HTTP) is the underlying
language that web servers and web browsers speak as they
negotiate the transfer of web content. HTTP is a well-
documented, well-tested text-based protocol that uses simple
verbs such as GET and POST to specify actions. A core
benefit of HTTP is that it includes support for interacting
with other network devices such as routers, load balancers,
and proxy cache servers. Once you consider the widespread
deployment of web servers, web browsers, and devices that
understand HTTP, it is easy to see why HTTP has become a
standard for building distributed applications.

 A common criticism of HTTP is that the size of your data
may be smaller than an actual HTTP header. For example, an
HTTP header may be 200 bytes long, while your actual data
payload may be only 100 bytes in size. So it costs more to
transmit the HTTP header than it does to send your unique
application data. Depending on your choice of tools, you can
control the size of the HTTP headers. However, you may
reach a point of diminishing returns where you may not be
able to significantly balance the header-to-payload ratio.
Keep in mind that interoperability often requires
compromise, and we'll continue to explore this concept later
in this article.

 Using HTTP verbs, software can send and request
packaged data with no predefined limits on size or format.
Indeed, Internet radio stations use HTTP to broadcast
continuous streams of binary data on an open connection.
The freedom to transmit any type of data further makes
HTTP ideal; however, there is value in considering a
structured approach to your HTTP payload data that will
help enable interoperability. The XML markup language was
created to facilitate the interchange of structured data by

allowing developers to use agreed-upon keywords. Consider
the XML text below, which defines one or more software
products along with product IDs and file information (such
as when a file was posted, and the size and version of the
file).

<software>
 <checkuptime interval="01:00:00"/>
 <product id="CBCC" uc="low" os="win32">
 <file name="cbcc_inst.exe" size="756345"
ver="3.00.00.00"
 posted="12/16/03 12:34 pm GMT"
md5="2d6897210ca5b816f24a7d52e319e07d"/>
 <desc>ChessBrain Control Center</desc>
 <changes>This release contains a fix
for...</changes>
 </product>
</software>

Arguably, the XML information could have been represented
in a far more compact binary format. For example, the XML
translates to a structure with precise data types, such as:

struct Software
{
 char product_id[20];
 char uc[4];
 char os[10];
 char filename[40];
 long filesize;
 char fileversion[12];
 char filemd5[33];
 char filedesc[80];
 char filechanges[1024];
};

Of immediate concern would be the use of the long filesize
field, which would be interpreted differently across
computers. The so-called "endian," which determines how
computer memory is organized, causes computers to
interpret the long filesize number in incompatible ways. This
issue affects PCs and Macs, in addition to a host of other
machines. Naturally, there are well-established methods of
addressing this problem. The issue is that you must take
those steps, and further place a similar burden on other
programmers when they attempt to interpret the same data.

 Another apparent limitation is the use of "fixed" data sizes.
Misunderstandings and lack of proper data validation can
lead to software defects, and one of the most common
security threats in existence -- the dreaded buffer overflow.
XML allows non-heterogeneous computers to safely receive
and process text data.

 XML's potential for enabling well-formed data makes it
ideal for text parsing. Today, there are widely available
programming libraries for working with XML using
languages such as C/C++ and Java. In addition, all major
scripting languages support XML, and remove much of the
complexity of working with XML data. Because of its
inherent structural simplicity, you're often able to quickly
parse data using standard string runtime calls such as strcmp

(), strstr(), and strncpy(), rather than employ the use of a full-
fledged XML tool.

 XML has proven to be a valuable tool and developers have
created XMLRPC (XML for Remote Procedure Calls) and
SOAP (the Simple Object Access Protocol) to formalize data
exchange methods. SOAP has become the preferred method
of building web-based services and now provides distributed
computing applications with standardized methods of
communicating with one another.

 The use of HTTP, XML, and XML-based grammars helps
to enable interoperability and dramatically improves the
chances that your project will be scalable.

Server Design
The goal of a SuperNode server is to dispatch work units to
PeerNode clients and to later collect results. There is no
shortage of ways to accomplish those goals; however,
because many distributed computing projects rely on HTTP
as an underlying protocol, the use of a web server is by far
the most common approach.

 Web servers form the foundation on top of which a
distributed application can be hosted. Using a scripting
language such as ASP or PHP, a web server can be
transformed into a custom application server.

 Let's say that we've written a PeerNode client that
processes a chunk of data and returns an XML-encoded
result to our project's SuperNode server. Our SuperNode
server is an Apache web server running the PHP scripting
language with access to a local database server. We've
written a script to process the incoming XML data and store
the results in a database table.

The XML data might look like this:

<result>
 <client ID="phoenix34@yahoo.com" ver="3.12.02" />
 <workunit WUID="5570f980­96e0­44ab­92bb­
569ca73d591b" value=".0156892354334" />
</result>

The result package consists of a user's information (in this
case, the user's email address), followed by the version
number of the client software that was used to process the
original data. Additionally the result package contains a
work unit identifier, followed by a resulting value.

On the server side, we have a PHP script that looks
something like this:

<?
 set_time_limit(300);
 header("Content­type: text/xml");

 function GetFieldData($string, $param)
 {

 $s = strstr($string, $param);
 if ($s)
 {
 $start = strpos($s,'"',0) + 1;
 $end = $start;
 while ($s[$end] != '"')
 $end++;
 $sval = substr($s,$start,$end ­ $start);
 return $sval;
 }
 return "";
 }

 $data = $HTTP_RAW_POST_DATA;
 :
 : More code here…
 :
?>

In the prior code fragment, the $data variable will contain
the XML data sent from the PeerNode client.
$HTTP_RAW_POST_DATA is a built-in PHP variable that
holds the data that was received via an HTTP POST
operation from a remote client.

Later in the script code, we'll use the GetFieldData() function
to extract some of the XML values. For example:

$clientID = GetFieldData($data, "ID");
$workunitID = GetFieldData($data, "WUID");
$resultValue = GetFieldData($data, "value");

After extracting the values, we'll store them in a database
using a code fragment like this:

$dbinsertstring = "INSERT INTO tblResults VALUES
($clientID, $workunitID, $resultValue)";
mysql_query($dbinsertstring);

In our PHP example, a single script was used to receive the
XML data via HTTP, extract the data values, and finally,
store the result in a database. While the specific function
calls will be different when using other scripting languages,
the general approach and ease of use remains similar.

 Leveraging the proven flexibility, reliability, and
robustness of a popular web server can be a wise decision.
However, using a web server is entirely optional. After
careful consideration, you may conclude that a custom server
is the only viable approach for your project. The general
operations would be roughly the same as our prior example,
but taking a custom server approach would be considerably
more complex. This is because developing a concurrent
multi-threaded server application is a non-trivial task, and
one worth avoiding if at all possible. However, if you're a
glutton for punishment and enjoy TCP/IP programming, data
structures, threads, and sleepless nights, a custom server
might just be what the doctor ordered. Having written
several custom servers, I can say that there are better ways of
cultivating gray hairs. Fortunately for the intrepid developer,
there are many great books available that explore server and
protocol development.

Client Software Considerations
The development of the PeerNode client requires that you
carefully consider several important issues; additionally, the
complexity of the client software development will strongly
depend on the approach you chose.

Let's consider a few vital questions:

• Which platforms will your project software
support?

• Will you develop exclusively for Microsoft
• Windows, Linux, or Mac OSX?
• Will you attempt to support multiple platforms?

• Will your client software have external
requirements, such as a dependency on a runtime
library or framework such as Java or .NET?

• Will you build your client software using a high-
level network programming library, or will you
code using lower-level TCP/IP sockets.

Naturally, the more platforms your project supports, the
broader your user base may become. This is a strong
argument for supporting multiple platforms despite the
resultant complexities. One way to sidestep many of the
platform issues is to use a cross-platform development tool.
For example, if you develop your client software using Java,
then your users may only need the Java runtime software on
their machines in order to run your client software. Another
approach is to use a highly portable programming language
such as C, C++, or Perl. Just keep in mind that while a core
language may itself be portable, depending on runtime
libraries and non-standardized language features can quickly
compromise portability. A good example is developing a
Windows client using the Microsoft Foundation Classes
(MFC) and then trying to port the application for use on
Linux. The key is to develop the application while using and
testing on the target platforms. Don't introduce a feature
unless you know for certain that the feature is present on all
of your target platforms.

 If you're not concerned with supporting multiple platforms,
you might consider Microsoft .NET. At this time, .NET
requires a 20MB framework download when used with older
versions of Windows. Future releases of Windows will
include a version of the .NET framework, so this may be less
of an issue moving forward.

 All of the programming languages we've considered in this
article support the use of TCP/IP programming; however, the
complexities increase depending upon the approach you
take. For example, you can take a high-level approach,
which shields you from specific network programming calls,
or you can take the lower-level approach, where you'll
handle the reading, writing, and buffering of network data.

 The strongest argument for using a readymade framework,
such as BOINC, is that many of the complexities of network
programming are virtually eliminated.

 Regardless of the software development approach you
decide on, you'll still need to carefully consider usability
issues. All software needs to be developed with an
understanding of the target audience. Who will run the
software? What skills are end users expected to posses?
Understanding the answers to these and other important
usability questions can directly translate to whether your
project will be well received and ultimately, well-supported.
To gain wide acceptance, your client software needs to
shield end users from unnecessary complexities.

 The SETI@home project was the first successful DC
project to recognize the ubiquity of the PC screensaver as a
vehicle for harnessing idle processing cycles. There are now
several well-understood reasons why screensavers have
proven ideal. Most people view screensavers as both
innocent and non-intrusive. People know that screensavers
only start when a machine is typically idle. Also, people in
offices enjoy displaying their screensavers rather than simply
turning off their monitors. This makes screensavers an ideal
tool for advertising a project, often leading to a "word of
mouth" marketing effect (See "The ChessBrain Project: A
Global Effort To Build The World's Largest Chess
SuperComputer," Justiniano, C and Frayn, (2003), Journal of
the International Computer Games Association; ICGA
Journal Vol. 26, No. 2, pp. 132-138.) Not all projects support
the use of a screensaver; however, the merits are certainly
worth considering.

 Building your client software to require as little technical
experience as humanly possible should be one of your most
important goals.
Databases

 The database server has become an indispensable fixture in
distributed computing projects. While conventional wisdom
dictates that databases are used for storing data, databases
have matured into application-development tools that far
exceed their originally intended uses.

 Database servers are commonly distributed throughout a
network and remotely accessed by other applications and
servers. This allows distributed applications to communicate
with one another by reading and writing database records. Is
this the best way to perform inter-process communication?
Perhaps not, but bear with me. Database servers also help to
distribute an application's memory requirements among one
or more servers. Without a database server, an application
might need to maintain data structures in memory and on
disk, taking away from the total available memory and
negatively impacting overall performance. Database servers

also help to distribute the data-processing load that results
from the need to search, sort, and tabulate results. Finally,
when properly utilized, database servers help glue together
distributed applications to help achieve maximum scalability.

 Application development can be a complex endeavor, and
database servers have the potential of simplifying difficult
tasks. There are powerful database systems available for
every budget, leaving little reason not to use them in your
own project.

Testing Considerations
Whether you choose to leverage existing servers and
platforms (such as Apache, MySQL and PHP) or build your
own custom server, it is vital that you consider how you'll
test your project's software. An all-too-common mistake is to
develop software without first considering how it will be
tested. In the end, some software products cost more to test
than they cost to actually develop in the first place.

 Scripting languages provide a means of performing serious
testing. Scripts can be used to test a server's functionality and
its ability to withstand excessive stress. Scripts are easily
modified and repurposed, and once written and tested, they
allow for subsequent quality-assurance regression testing,
ensuring that the server performs correctly after any recent
modifications.

 Another important consideration is to simulate end-user
environments as closely as possible in order to perform
accurate tests. It is essential to install proxy servers and
firewalls during the software research and development stage
to ensure proper behavior. In particular, the use of proxy
caching servers should be carefully examined. A caching
server seeks to reduce network traffic by storing and reusing
data. This behavior can introduce problems for applications
that use HTTP.

 The use of open standards such as HTTP and XML ensure
that both professional testing houses and informal testers can
assist with the product testing. You see, interoperability does
have its benefits.

Network Failures: Expecting the Unexpected
Building network software can seem deceptively simple at
times, especially for less experienced developers. In network
programming, the complex actions of humans, computers,
and networks can cause unexpected behavior that results in a
catastrophic outcome, such as a server crash or, worse, a
system crash. The key to surviving catastrophes is to plan for
them.

Consider these issues:

• The SuperNode server may send a task to a
PeerNode client, which gladly accepts the task.

• Later, its user stops the client software before a
result can be returned.

• A PeerNode client may be in the process of
returning a result when it loses its network
connection.

• The SuperNode server may collapse under the
pressure of PeerNode connections, resulting in a
crash, which leaves thousands (and possibly,
millions) of PeerNodes unable to connect.

Unless carefully planned for, unexpected problems may
ultimately destroy a distributed computing project that is ill-
prepared to cope with unexpected situations.

 It's essential to distribute the same work units to many
PeerNodes. If one PeerNode does not return a result, perhaps
some other PeerNode will. Should all of the PeerNodes
working on the same task fail to return a result, then the
work unit is simply marked as incomplete and will be sent to
another batch of PeerNodes at a later time. The use of
redundancy creates a robust system, where the project is not
dependent on whether or not an individual PeerNode
completes a task.

 You must also take into account the potential failure of a
SuperNode server. How will PeerNode clients respond if a
SuperNode is no longer available? PeerNode clients must be
designed to handle the case of unreachable SuperNodes. If a
PeerNode client stopped working (because of a crash), then
the moment a SuperNode server becomes unreachable, your
entire network might fall apart.

 One way to address this problem is to design your
PeerNode so that it accepts connection failures and
gracefully retries at a later time. Additionally, build your
PeerNode client so that it's able to connect to Internet
addresses by name, such as node01.distributedchess.net or
node02.distributedchess.net. If a connection to
node01.distributedchess.net fails, then the PeerNode will try
node02. PeerNodes can also maintain a list of SuperNode
servers and migrate to the next available server as needed.
Should a SuperNode server fail, PeerNodes will behave like
a swarm of bees changing direction on their way to another
destination.
Security

 Security plays a vital role in many aspects of a DC project.
Both project organizers and participants have valid concerns
regarding security. Participants have concerns about their
privacy and their machine's susceptibility to viruses, and
many wonder if using DC software makes their machines
easier targets for attackers. On the other side of the fence,
project developers have concerns that attackers may find
ways to tamper with results, invalidating received work
units.

 Developers are faced with securing a project from a
number of vantage points. A first order of business is to
examine points of vulnerability. Where can an attacker cause
harm? Which aspects of the project can be exploited and
otherwise abused by participants?

 Project participants download PeerNode client software
from a project's web site, so it makes sense that the project's
web server is an obvious target. If an attacker can penetrate a
site and replace the downloadable PeerNode clients with
compromised versions, then many machines will become
infected.

 Fortunately, a considerable amount of research has been
done to address server security. Intrusion detection systems
(IDSes) use sophisticated monitoring techniques to detect
potential security issues. An IDS can monitor TCP packets to
identify when an attacker is performing a port scan or when a
denial-of-service attack is underway. IDSes can also monitor
system files and user patterns for unexpected behavior (such
as a normal user acquiring root level access), and when core
system configuration files are modified. You can configure
an IDS to send you an email when a problem occurs. Think
of it as an early warning system.

 There are thousands (OK, maybe just hundreds) of tools
that can be used to monitor network traffic. One such tool is
the freely available Ethereal, which uses a packet-sniffing
library in order to perform its higher-level functions, such as
filtering and display. The same types of underlying tools are
available to attackers who can use them to intercept and
modify data while in transit.

 Take, for example, an attacker wishing to disrupt a DC
project. The attacker builds a Trojan software product that
masquerades as a useful monitoring and statistics tracking
system for end users. The malicious tool performs useful
functions while slightly modifying the transmitted results
prior to sending them on their way. The tampered data has
the potential of completely invalidating the DC project --
resulting in a complete waste of time for all involved. We
won't get into the many psychological reasons why some
people consider this sort of behavior exciting, but suffice it
to say that disrupting a high-profile DC project might offer
an attacker icon status in certain circles.

 The only hope of protecting your project is to make it
difficult for an attacker to modify transmitted data. As with
most things, there are easy and harder ways of doing things.

Data Hiding
Software developers are sometimes faced with the classical
problem of space versus performance. The need to protect
data may be sufficiently clear; however, the cost of doing so
may be prohibitive. Hiding data, rather then fully encrypting

it, and using strong validation techniques on both the server
and client end, may offer a suitable compromise.

 Data compression can effectively reduce bandwidth
requirements, and has a positive side effect of masking the
original contents. Applying byte transformations, such as
XOR operations and weak reversible data ciphers, will
further aid in data hiding. Clearly, data hiding is by no
means as secure as data encryption, but may be suitable for
use in certain settings.

Data Encryption
Widely available implementations of popular data-
encryption algorithms leave project developers with little
reason not to apply some form of data protection. One
popular algorithm is the Advanced Encryption Standard
(AES), also known as Rijndael (pronounced "rain doll").
AES is a variable block symmetric encryption algorithm
developed by Belgian cryptographers Joan Daemen and
Vincent Rijmen as a replacement for the aging DES and
Triple DES standards that are still commonly used to secure
e-commerce. AES is currently used in hundreds of high-end
encryption products and is a favorite among developers.
Additionally, AES implementations can be found online.

 For maximum security, where performance may be less of
an issue, the use of public key cryptography is highly
recommended. Public Key Infrastructure (PKI) systems use
public key encryption to create digital certificates, which are
managed by certificate authorities. Certificate Authorities
(CAs) establish a trust hierarchy, which can be used to
validate authenticity through association. The use of PKI
would allow a SuperNode server to authenticate PeerNodes,
and PeerNodes to validate that they are indeed
communicating with an authentic SuperNode.

Detecting Software Tampering
Project contributors may acquire PeerNode client software
from one of many locations. For example, a project team
leader might download and place the client software on the
team's web site along with specialized instructions for team
members.

 There is a certain degree of trust associated when the
software is downloaded directly from the project's main web
site. However, when project software is made available from
different locations, project contributors may not be able to
trust the origins and validity of the software. For all they
know, the software could be a Trojan program. To address
this concern, DC software is often posted on a project's site
along with a cryptographic hash string, such as:

3402b30a24dc4d248c7c207e9632479a client21201­01­
lin­i586.tgz

The string of numbers and letters is the output of a program
called md5sum, which generates the string of alphanumeric
characters when given a filename as input.

End users can download a project's client software and type:

md5sum client21201­01­lin­i586.tgz

The output is a string that should match the one posted on
the download site.

 For higher levels of security, some projects sign their files
using a private key. Users wanting to validate that a file's
digital signature is correct can retrieve the project's public
key (available online via public key servers) and use it to
validate that the downloaded file. The signature below is an
example of what a contributor might see posted on the
project's site.

­­­­­BEGIN PGP SIGNATURE­­­­­
Version: GnuPG v1.2.1 (GNU/Linux)

iD8DBQA/ye8su9d1K+MjI6sRAtQXAKCgcXahYj1ZcptsXR10WCn
SbKs2ggCeK/Qv
4THuyfGOeDEyHiHnHX9pkZw=
=Nj+a
­­­­­END PGP SIGNATURE­­­­­

The important thing concerning a cryptographic hash and a
digital signature is that both techniques can be used to
determine whether a file has been tampered with after it was
posted. This allows the software to be distributed and for end
users to validate that the file has not been tampered with. By
far the most secure method involves the use of digital keys,
and that technique is being used in an increasing number of
projects.

 There is a wealth of security information available on the
Internet, and many open source projects demonstrate
working implementations. As a DC project developer, you
have the responsibility to explore security and protect both
your project and your members.

Combating Aging: Software Updates
As computer users, we've grown accustomed to automatic
software updates. Now companies such as Microsoft, Apple,
and Red Hat offer their customers software updates. They're
not alone, as thousands of other software companies also
offer updates.

 Updates are released for any number of valid reasons,
ranging from program fixes and new features, to the latest
security Band-Aids. In all fairness, software complexity has
increased while the time to market has decreased, causing
products to be released to an unsuspecting public in a less-
than-perfect state. In addition, network-connected software is
under siege as attackers attempt to discover and later exploit
security flaws. Rapidly distributing software updates has

become the only real defense companies have against coping
with the unexpected.

 A real issue facing developers is how to make software
updates quick and painless for their customers. Long gone
are the days when posting an update on your company's FTP
or web site sufficed. Companies are seeing their products
used by a wider demographic, where even a "one-click
install" is one click too many.

 The challenge affects all DC projects, to lesser and greater
degrees. Long-running, static-type projects often do not
require software updates. However, for projects that are
highly dynamic, where the client code is being updated in
response to ongoing research and development, the need to
release continuous updates is far more critical.
Bandwidth and Hosting

 An important consideration for any DC project involves
determining network bandwidth utilization. It is important to
consider bandwidth from both the SuperNode server's end as
well as from a PeerNode's perspective.

 Many popular DC projects package data into chunks that
take PeerNodes days or sometimes weeks to process. In these
cases, the actual network bandwidth utilization on the client
side is negligible by average end-user network usage
patterns. For example, accessing a single high-bandwidth
web site with lots of graphics can use more bandwidth than
most DC clients use in weeks.

 The situation on the server side offers a very different
perspective, where a single SuperNode server might service
thousands (or, if truly popular, millions) of requests per day.

 It is important to examine the frequency and size of data
transmissions and to adequately plan for bandwidth
requirements. One of the best ways to study the behavior of a
network application is to use a network analyzer. Ethereal is
a good tool for examining what is actually going through the
wire; however, network-bandwidth measuring tools and
load-test simulations should also be used to gain better
insights into the application's true requirements.

 Understanding the project's network requirements is
necessary in order to choose the right server-hosting plan.
Proper planning is essential, because if your project becomes
successful, you may discover you can not afford to pay for
the bandwidth costs. Even if you do not pay for bandwidth,
the bottom line is that someone, somewhere, does pay, and
without proper analysis, your project may be terminated
prematurely.

 The best course of action is to plan for bandwidth,
carefully consider your data protocol, and potentially, use
data-compression techniques.

Backup

 Your favorite computer's days are numbered: it's just a
matter of time before a key component, such as a hard drive
or power supply, breaks down. Because distributed
computation projects typically deal with vast amounts of
data, it is absolutely vital that you develop a backup strategy.

 It is virtually impossible (or exceedingly expensive) to
guard against data loss. The key is to minimize your risk
exposure. For instance, if you perform a backup once per
day, it's possible that you may lose nearly a day's worth of
data in the event of a hardware failure. Thus, backing up data
once per hour minimizes the risk of losing an entire day's
work. Data mirroring using redundant hardware is certainly
the way to go if you can afford it, however you'll still need a
backup policy.

 An overwhelming majority of individuals don't perform
regular data backups. The reason is actually quite simple --
it's a chore to do so. The best way to ensure that data is
backed up regularly is to automate the process. On UNIX-
type systems, the process is greatly simplified using the
crontab scheduling system and archive scripts. On other
systems, you may need to explore backup software solutions.

 Another key backup strategy is the concept of offsite
storage. In addition to redundant storage (storage on multiple
machines) and CD archives, I use a service called Xdrive as
an offsite storage facility.

 Protect your data. Hardware may be expendable, but loss
of data may cripple your project. Yes, this is potentially one
place where paranoia may really pay off.
A Value Proposition

 We've skimmed the surface of many, but by no means all,
of the technical considerations you might encounter.
However, not all of the issues you'll encounter will be
technical in nature. There is a very human aspect to
distributed computing, and failure to understand the human
elements will seriously jeopardize your project's long term
viability.

 In the past, the notion that individuals would pay for, and
allow their computers to participate in, research projects was
foolhardy, at best. Times have changed. Today, millions of
people participate in distributed computation projects. As a
result, we are now able to tap a wealth of computing
resources. However, there is one small catch: we must
convince people to join our projects.

 If you are interested in getting people to join your project,
you need to create a value proposition offering an enjoyable
and rewarding experience in exchange for participation. In
addition, you need to consider how to retain members once

they have joined. The best way to begin to address these
issues is by understanding the underlying motivators that
attract people to distributed computation projects.
Why People Join DC Projects

 You may be wondering what drives a person to contribute
their time, energy, and the use of their computer to a
distributed computation project. Although specific reasons
vary, there are a few common themes that consistently
appear in DC projects.

A Sense of Purpose
Some members are motivated by a deep sense of
purpose. Projects such as FightAids@home and the
University of Oxford's cancer research project offer
individuals the opportunity to support noble research
that might ultimately benefit millions of people.

A Sense of Community
Many active members enjoy being part of a community
and collaborating with other people. Generally, people
like to be involved in things that transcend them as
individuals.

Competitive Opportunities and Peer Recognition
Members want to know that their contributions matter.
All major distributed computing projects track member
contributions and post the results on the project's web
site. Members gain the respect of their peers and obtain
subculture ranking within communities.

Entertainment
Participating in a distributed computing project can be
entertaining in a number of ways. Meeting people and
competing against them can be entertaining.

Successful projects understand the needs we've just
examined and seek ways of promoting them within the
context of the project.

The Distributed Computing Scene
Distributed computing projects have given birth to
communities of enthusiasts who closely support projects. In
turn, project web sites publicly display project statistics and
member ranking (sometimes referred to as leaderboards)
offering individuals a convenient way to compare their
ranking against those of their peers. This has led community
members to form teams, which compete against one another
to see which group can make the most significant
contributions to a project. Project organizers are eager to
support competition because the results typically lead to
teams recruiting more members and subsequently, more
computers.

 Distributed computing team members have adopted the
moniker "DC Team," and members refer to themselves as

"DC'ers." Many DC'ers take their hobby seriously, and many
run two or more machines, with some running as many as 40
or more while participating in various projects.

 When asked why he contributes to projects, DC'er Chris
Harrell replied, "I like to think I solely pursue DC projects
for the common good of mankind, but I cannot deny the fact
that the project statistics are the main attraction for 99% of
DC contributors." Chris is far from alone; for many DC'ers,
interest in a project comes second to competing for public
ranking.

 When I started ChessBrain, a global project to build the
world's largest distributed chess computer, I was surprised to
discover contributors who had very little interest in the game
of chess. This was my first introduction to a network
economy where DC teams support research projects in
exchange for an opportunity to compete against one another.

 International teams, like the Dutch Power Cows and
AnandTech, claim to have thousands of members. DC Teams
have become a powerful force in helping to shape the future
of distributed computation projects on the net, by providing a
highly technical member base with access to thousands of
machines. They are the unsung heroes of a new age.

Establishing Credibility and Trust
Project participants have many projects to choose from, but
don't mind exploring a project for a brief time, in order to get
a sense of it. However, potential members won't waste their
time participating in a project that doesn't appear worthwhile.

 Before a significant number of people take interest in a
new project, it must first establish a certain degree of
credibility. Establishing credibility begins by clearly
articulating goals and demonstrating the project's
commitment to achieving a measurable result. The project
must clearly communicate the message: "This project is
worth your time!"

 Most distributed computing projects maintain web sites,
which articulate the project goals, present project status
reports, and offer software download areas. In some cases,
project web sites feature online forums where members can
post feedback directly to the development team and other
members. A project's community forum offers project
leaders and members opportunities to publicly engage in
conversations. The presence of a public forum can go a long
way toward communicating the commitment and seriousness
of a project.

 One way of gaining credibility is through association.
Some DC projects enjoy near-instant credibility when well-
established institutions or well-known companies sponsor
them.

 In the process of building credibility, you must also
establish a relationship based on trust. Generally, participants
must believe in the credibility and trustworthiness of a
project before downloading and running potentially
malicious software on their machines and networks.

 One of the surest ways of establishing trust is to engage in
direct conversations with potential members via email, on a
project web site, and on other public forums. Nothing says,
"your voice matters" faster than a prompt reply to a
member's inquiry. Although this isn't always possible, the
goodwill generated is worth its weight in gold.

 Open and honest communication is a tool that tears down
relationship barriers, and helps foster healthy and productive
relationships. This is a point that is often difficult to
remember when coping with difficult people. Let's face it –
public relations can be a difficult job. Freedom of networked
speech often results in members pretty much saying
whatever they want while publicly venting frustrations.
These sorts of behavior can quickly erode a project's
credibility as mob-like conditions lead others to join in. This
is where, as a leader, you must exercise the most restraint.
Months and possibly years of relationship building can
quickly crumble as a result of an ill-prepared response.

 It is important to remember that project contributors give
freely of themselves and that it is difficult to run a distributed
computation project without them. Exercising tempered
restraint and maintaining an eternal state of gratitude is vital
to maintaining a successful project.

 The most important element in a distributed computation
project remains the people and communities who join
together to unlock the vast potential of distributed machines.
To paraphrase the Matrix: They are the gate keepers. They
are guarding all the doors. They are holding all the keys.

 Years ago, Sun Microsystems promoted their marketing
slogan: "The network is the computer." Although this still
remains relevant in the context of distributed computing, I'd
like to offer another mantra: "The people are the network."
The machines are simply tools that allow us to touch, if for
just a moment, the very limits of our imaginations.

